skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Jenerette, G_Darrel"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT Climate change is altering precipitation regimes that control nitrogen (N) cycling in terrestrial ecosystems. In ecosystems exposed to frequent drought, N can accumulate in soils as they dry, stimulating the emission of both nitric oxide (NO; an air pollutant at high concentrations) and nitrous oxide (N2O; a powerful greenhouse gas) when the dry soils wet up. Because changes in both N availability and soil moisture can alter the capacity of nitrifying organisms such as ammonia‐oxidizing bacteria (AOB) and archaea (AOA) to process N and emit N gases, predicting whether shifts in precipitation may alter NO and N2O emissions requires understanding how both AOA and AOB may respond. Thus, we ask: How does altering summer and winter precipitation affect nitrifier‐derived N trace gas emissions in a dryland ecosystem? To answer this question, we manipulated summer and winter precipitation and measured AOA‐ and AOB‐derived N trace gas emissions, AOA and AOB abundance, and soil N concentrations. We found that excluding summer precipitation increased AOB‐derived NO emissions, consistent with the increase in soil N availability, and that increasing summer precipitation amount promoted AOB activity. Excluding precipitation in the winter (the most extreme water limitation we imposed) did not alter nitrifier‐derived NO emissions despite N accumulating in soils. Instead, nitrate that accumulated under drought correlated with high N2O emission via denitrification upon wetting dry soils. Increases in the timing and intensity of precipitation that are forecasted under climate change may, therefore, influence the emission of N gases according to the magnitude and season during which the changes occur. 
    more » « less
  2. Societal Impact Statement People plant, remove, and manage urban vegetation in cities for varying purposes and to varying extents. The direct manipulation of plants affects the benefits people receive from plants. In synthesizing several studies of urban biodiversity in Los Angeles, we find that cultivated plants differ from those in remnant natural areas. This highlights the importance of studying cultivated plants in cities, which is crucial for the design and planning of sustainable cities. Residents have created a new urban biome in Los Angeles, and this has consequences for associated organisms, ultimately resulting in a responsibility for society to determine what type of biome we wish to create. SummaryUrbanization is a large driver of biodiversity globally. Within cities, urban trees, gardens, and residential yards contribute extensively to plant biodiversity, although the consequences and mechanisms of plant cultivation for biodiversity are uncertain.We used Los Angeles, California, USA as a case study for investigating plant diversity in cultivated areas. We synthesized datasets quantifying the diversity of urban trees, residential yards, and community gardens in Los Angeles, the availability of plants from nurseries, and residents’ attitudes about plant attributes.Cultivated plant diversity was drastically different from remnant natural areas; compared to remnant natural areas, cultivated areas contained more exotic species, more than double the number of plant species, and turnover in plant functional trait distributions. In cultivated areas, most plants were intentionally planted and dominated by exotic species planted for ornamental purposes. Most tree species sampled in Los Angeles were available for sale in local nurseries. Residents’ preferences for specific plant traits were correlated with the trait composition of the plant community, suggesting cultivated plant communities at least partially reflect resident preferences.Our findings demonstrate the importance of cultivated species in a diverse megacity that are driven in part through commercial distribution. The cultivation of plants in Los Angeles greatly increases regional plant biodiversity through changes in species composition and functional trait distributions. The pervasive presence of cultivated species likely has many consequences for residents and the ecosystem services they receive compared with unmanaged or remnant urban areas. 
    more » « less